# Sneak Preview 2: Outliers, Metric Transformation, and ES Distribution

**Posted:**May 31, 2012 |

**Author:**A. R. Hafdahl |

**Filed under:**Sneak Preview |

**Tags:**assumption violation, between-studies variance component, conditional variance, correlation, effect size, fixed effect, heterogeneity, interval estimation, meta-analysis, outlier, random effect, substantive application | Leave a comment

My previous three posts on fitting models to effect sizes (ESs)—Parts 5a, 5b, and 5c—were the core of my seven-part overview of meta-analysis. With only two posts remaining in the overview, I’ll pause again to describe three more methodological issues I plan to discuss: **potential outliers**, **transforming ES metrics**, and the **distribution of ES parameters**. As in my first sneak preview—about degraded ESs and tricky conditional variances (CVs)—I’ll keep these “teaser” descriptions fairly short, mainly to pique your interest; each issue deserves at least one dedicated post with more detail.

Read the rest of this entry »

# Overview of Meta-Analysis, Part 5c (of 7): Primary Meta-Analyses (cont.)

**Posted:**May 13, 2012 |

**Author:**A. R. Hafdahl |

**Filed under:**Overview of Meta-Analysis |

**Tags:**Bayesian analysis, between-studies variance component, dependence, fixed effect, heterogeneity, interval estimation, meta-analysis, meta-regression, model comparison, moderator, multivariate effect size, random effect, significance testing, standardized mean difference | 1 Comment

This is the last of three posts in Part 5 of my overview of meta-analysis. In Part 5a I described six conventional meta-analytic models for effect-size (ES) estimates, and in Part 5b I described estimation and inference for two of those models without covariates. In this post I’ll extend the methods of Part 5b to two **models with covariates** and comment on **extensions and other variants** of these models and procedures, to hint at the wide variety of situations that arise in meta-analysis. In Parts 6 and 7 of the overview, I’ll address follow-up procedures and ways to report results, respectively.

Read the rest of this entry »

# Overview of Meta-Analysis, Part 5b (of 7): Primary Meta-Analyses (cont.)

**Posted:**April 30, 2012 |

**Author:**A. R. Hafdahl |

**Filed under:**Overview of Meta-Analysis |

**Tags:**between-studies variance component, conditional variance, fixed effect, heterogeneity, interval estimation, math notation, meta-analysis, meta-regression, random effect, significance testing, standardized mean difference | 2 Comments

This is the second of three posts in Part 5 of my overview of meta-analysis. In Part 5a I described six conventional models for meta-analysis, each of which combines within-study and between-studies models. In this second post I first comment on **nested models** then describe **estimation and inference for two models without covariates**—procedures for fitting these models to effect-size (ES) estimates and quantifying uncertainty about their focal (hyper)parameters. In the third post, Part 5c, I’ll do the same for two models with covariates and also comment on extensions and variants of these models and procedures.

Read the rest of this entry »